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Simple Summary: Imaging derived parameters can provide data on tumor phenotype as well
as cancer microenvironment. Radiomics has recently shown potential in realizing personalized
medicine. The aim of the manuscript is to detect RAS mutation in colorectal liver metastasis by
Diffusion-Weighted Magnetic Resonance Imaging (DWI-MRI) - and Diffusion Kurtosis imaging
(DKI)-derived parameters. We demonstrated that DKI derived parameters allows to detect RAS
mutation in liver metastasis.

Abstract: Objectives: To detect RAS mutation in colorectal liver metastasis by Diffusion-Weighted
Magnetic Resonance Imaging (DWI-MRI) - and Diffusion Kurtosis imaging (DKI)-derived parameters.
Methods: In total, 106 liver metastasis (60 metastases with RAS mutation) in 52 patients were included
in this retrospective study. Diffusion and perfusion parameters were derived by DWI (apparent
diffusion coefficient (ADC), basal signal (S0), pseudo-diffusion coefficient (DP), perfusion fraction (FP)
and tissue diffusivity (DT)) and DKI data (mean of diffusion coefficient (MD) and mean of diffusional
Kurtosis (MK)). Wilcoxon–Mann–Whitney U tests for non-parametric variables and receiver operating
characteristic (ROC) analyses were calculated with area under ROC curve (AUC). Moreover, pattern
recognition approaches (linear classifier, support vector machine, k-nearest neighbours, decision tree),
with features selection methods and a leave-one-out cross validation approach, were considered.
Results: A significant discrimination between the group with RAS mutation and the group without
RAS mutation was obtained by the standard deviation value of MK (MK STD), by the mean value of
MD, and by that of FP. The best results were reached by MK STD with an AUC of 0.80 (sensitivity
of 72%, specificity of 85%, accuracy of 79%) using a cut-off of 203.90 × 10−3, and by the mean value
of MD with AUC of 0.80 (sensitivity of 84%, specificity of 73%, accuracy of 77%) using a cut-off of
1694.30 mm2/s × 10−6. Considering all extracted features or the predictors obtained by the features
selection method (the mean value of S0, the standard deviation value of MK, FP and of DT), the
tested pattern recognition approaches did not determine an increase in diagnostic accuracy to detect
RAS mutation (AUC of 0.73 and 0.69, respectively). Conclusions: Diffusion-Weighted imaging and
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Diffusion Kurtosis imaging could be used to detect the RAS mutation in liver metastasis. The standard
deviation value of MK and the mean value of MD were the more accurate parameters in the RAS
mutation detection, with an AUC of 0.80.

Keywords: magnetic resonance imaging; DWI; DKI; liver metastasis

1. Introduction

Imaging derived parameters, when linked to other clinical data and correlated with outcome, can
produce robust and accurate clinical decision support systems [1–3]. Imaging-derived parameters can
be combined with genomics information in order to provide prognostic tools in oncological therapies.
In fact, the various microRNA signatures expressions have been shown to correlate with treatment
response, metastatic spread and prognosis [4–6]. Combined imaging-derived parameters and genomic
signatures (“radio-genomic”) may be able to greatly enhance patient selection for different cancer
therapy, predicting treatment response, addressing potential resistance to therapy, distinguishing
favourable subsets of patients from those with poor prognosis and evaluating which patients may
benefit from adjuvant therapy [3,7]. Various biomarkers have been identified for chemotherapy in
advanced colorectal cancer (CRC). RAS and BRAF mutation and microsatellite instability status are
considered significant biomarkers influencing medical oncologists’ decisions for systemic treatments.
Considering the literature’s available data, RAS mutations analysis is important for anti-epidermal
growth factor receptor (EGFR) therapy selection, and is deemed mandatory before treatment beginning
in advanced CRC. In addition, CRC with wild-type RAS is not always sensitive to anti-EGFR antibodies,
while BRAF-mutant CRC has a poor prognosis, as it is associated with lower chemotherapy sensitivity
and with clinical situations particularly affecting patient’s performance status [8,9]. Kirsten-ras
(KRAS) is an oncogene that forms an EGFR signaling cascade through various pathways, including
Ras-RafMARK [10–13]. Through these pathways, KRAS modifies cell transformation and inhibits the
tumor suppressor pathways. When KRAS mutations, which are found in 30–40% of CRC patients, are
present, these pathways are activated continuously, which makes anti-EGFR monoclonal antibodies less
effective in blocking EGFR [10–13]. Studies have shown that patients with KRAS-mutant tumors did not
benefit from anti-EGFR antibody therapy [10,11]. Therefore, the presence of KRAS mutation in CRC is of
great importance for the determination of individualized treatment. KRAS mutation is associated with
morphologic tumor growth patterns. Moreover, increased cell growth activity induced by activated
KRAS mutation seems to be essential for polypoid growth in CRC [14]. Then, the Diffusion-Weighted
imaging (DWI) that offers functional quantitative information on the tissue’s microstructure by means
of the water proton mobility differences and cellular density evaluation [15,16] can be used in the
detection of RAS mutation. Water diffusion mobility is linked to cell density, vascularity and the
viscosity of the extracellular apparent diffusion coefficient (ADC), and using a mono-exponential model
or with diffusion and perfusion parameters in a bi-exponential model, it’s possible to individuate
imaging biomarkers for fibrosis, tumor fluid and cell membrane integrity [17,18]. Using an Intravoxel
Incoherent Motion method (IVIM) bi-exponential model to analyze DWI data, one can obtain the pure
tissue coefficient (Dt) linked only to diffusion water mobility, the pseudo-diffusion coefficient (Dp)
linked to blood mobility, and the perfusion fraction (fp) [19–23].

The traditional DWI data analysis approach is founded on the hypothesis that voxel water
diffusion has a single component and follows a normal Gaussian distribution, and that water molecules
diffuse without any constraint [23]. However, water molecule diffusion within biologic tissue exhibits
non-Gaussian behavior [24]. Jensen et al. in 2005 reported a non-Gaussian diffusion model called
Diffusion Kurtosis imaging (DKI) [24] used to analyze DWI data. This model includes the mean
value of the kurtosis coefficient median (MK), which measures the tissue diffusion deviation from
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a Gaussian model, and the mean value of the diffusion coefficient (MD) with the correction of the
non-Gaussian bias.

The aim of this study is to determine the potential of DWI- and DKI-derived parameters in the
detection of RAS mutation in colorectal liver metastasis.

2. Materials and Methods

2.1. Dataset Characteristics

The National Cancer Institute of Naples institutional review board approved this retrospective
study. The study was made in accordance with local relevant guidelines and regulations [21,
22,25]. Informed consent considering the retrospective nature of the study was waived by the
institutional review board. Each patient signed consent to data processing. We searched the
radiological database at our institution from January 2018 to December 2019, and selected patients with
colorectal liver metastases, who underwent MR study and hepatic resection. The inclusion criteria for
the study population were as follows: (a) patients who had pathologically-proven liver metastases;
(b) patients who had undergone MR imaging, with less than a 10–15 days interval by surgical resection;
(c) availability of diagnostic quality pictures of the MR studies; and (d) availability of diagnostic quality
pictures of the cut sections of the resected specimens in patients who underwent surgical resection
for matching of imaging and pathology findings. The exclusion criteria were as follows: (a) conflict
between the imaging-based diagnosis and the pathologically confirmed diagnosis; (b) no available MR
images; and (c) no availability of contrast study.

In total, 66 patients with 126 liver metastases confirmed at pathology fulfilled the inclusion
criteria during the study period. Among them, 14 patients were excluded for the following reasons:
(a) 8 patients had no availability of diagnostic quality pictures of MR study; (b) 6 patients had no
availability of contrast studies. Finally, 52 patients (25 women and 27 men; mean age, 59 years;
range, 36–80 years) with 106 liver metastases comprised our study population. All liver metastases
were analyzed. Among them 60 metastases with histologically confirmed RAS mutation were found.
The characteristics of the patients and of metastases are summarized in Table 1. For each patient there
was concordance between the presence of RAS mutation between primary tumor and metastasis.

Table 1. Characteristics of the study population.

Patients with RAS
Mutation

Patients with
Wild-Type All Patients

Patients Description Numbers (%)/Range

Gender
Men 15 (53.6%) Men 12 (50.0%) Men 27 (51.9%)

Women 13 (46.4%) Women 12 (50.0%) Women 25 (48.1%)
Age 58 y; range: 36–79 y 59 y; range: 37–80 y 59 y; range: 36–80 y

Primary Cancer Site

Colon 15 (53.6%) 13 (54.2%) 28 (53.8%)
Rectum 13 (46.4%) 11(45.8%) 24 (46.2%)

Hepatic Metastases
Description

Patients with single
nodule 11 (39.3%) 9 (37.5%) 20 (38.5%)

Patients with multiple
nodules 17 (60.7%) 15(62.5%) 32 (61.5%)/range:

2–15 metastases

Nodule size (mm) mean size 35.2 mm;
range 19–54 mm

mean size 33.7 mm;
range 18–52 mm

mean size 34.4 mm;
range 18–54 mm
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2.2. MR Imaging Protocol

A 1.5 T Magnetic Resonance scanner (Magnetom Symphony, with Total Imaging Matrix Package,
Siemens, Erlangen, Germany) with an 8-element body and phased array coils was used for MRI
acquisition. MRI included basal images before intravenous (IV) injection of a hepato-specific contrast
medium (CM) and then dynamic sequences obtained after IV injection of CM; the last series of images
was acquired with a delay of 20 min during the CM hepatobiliary excretion. The MRI sequences
fit the following criteria: coronal Trufisp T2-weighted free breathing; axial Half-Fourier Acquisition
Single-Shot Turbo Spin-Echo (HASTE) T2-weighted, with controlled respiration, without and with
fat-suppressed (FS) gradient-echo pulse; coronal HASTE T2-weighted, without FS; axial flash in-out
phase T1-weighted, with controlled respiration; Volumetric Interpolated Breath-hold Examination
(VIBE) T1-weighted Spectral adiabatic inversion recovery (SPAIR) with controlled respiration; DWI
with echo-pulse planar sequence (EPI) at several b values (0, 50, 100, 200, 400, 600, 1000 and 2000 s/mm2).
Details of sequence parameters were reported in Table 2 and in our previous manuscripts [1,25]. The MR
sequences were acquired in free breathing. However, region of interest segmentation was performed
avoiding encircling any distortion artefacts.

Table 2. Pulse sequence parameters on MR studies.

Sequence Orientation TR/TE/FA
(ms/ms/deg.) AT (min) Acquisition

Matrix
ST/Gap

(mm) FS

Trufisp T2-W Coronal 4.30/2.15/80 0.46 512 × 512 4/0 without

HASTE T2-W Axial 1500/90/170 0.36 320 × 320 5/0 without and
with (SPAIR)

HASTE T2-W Coronal 1500/92/170 0.38 320 × 320 5/0 without

In-Out phase
T1-W Axial 160/2.35/70 0.33 256 × 192 5/0 without

DWI Axial 7500/91/90 7 192 × 192 3/0 with (SPAIR)

Vibe T1-W Axial 4.80/1.76/12 0.18 320 × 260 3/0 with (SPAIR)

Note: TR = Repetition time, TE = Echo time, FA = Flip angle, AT = Acquisition time, ST = Slice thickness, FS = Fat
suppression, SPAIR = Spectral adiabatic inversion recovery.

As liver-specific CM, the Gd-EOB-BPTA (Primovist, Bayer Schering Pharma, Germany),
was employed—0.1 mL/kg of Gd-EOB-BPTA administrated using a power injector (Spectris Solaris®

EP MR, MEDRAD Inc., Indianola, IA, USA), at an infusion rate of 2 mL/s.

2.3. Data Analysis

Manual segmentation was performed by two expert radiologists, with at least 15 years of experience
in MR liver imaging, drawing manually (and simultaneously avoiding encircling any distortion artefacts)
the region of interests (ROIs) on diffusion-weighted imaging with the highest b-value, along the contours
of the tumour to obtain a volume of interest (VOI) for each lesion [1,25]. DWI analyses were performed
blinded to the clinical, RAS mutation and pathological data. No registration techniques were used
to reduce movement artefacts, however VOI-based analysis was performed to reduce the influence
of artefacts.

DWI Features

Voxel by voxel, by DWI 14 features were extracted using the mono-exponential model with
all b values, the Diffusion Kurtosis imaging model with one low b-value 50 s/mm2 and multiple
high b-values >200 s/mm2 (400, 600, 1000 and 2000 s/mm2) and the Intra-Voxel Incoherent Motion
using a conventional bi-exponential fitting method based on the Levenberg Marquardt algorithm
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with multiple low b-values < 200 s/mm2 (0, 50, 100, 200 s/mm2) and higher b-values (400, 600 and
1000 s/mm2) [21,22,25].

The apparent diffusion coefficient (ADC) was obtained using the mono-exponential model [15,16]:

ADC =
ln S0

Sb

b
(1)

where Sb is the MRI signal intensity with diffusion weighting band, and S0 is the non-diffusion-weighted
signal intensity.

In addition to the mono-exponential model, a conventional biexponential model using the
Levenberg Marquardt fitting method was used to estimate the following IVIM-derived parameters:
the pseudo-diffusivity (Dp indicated also with D *), the perfusion fraction (fp indicated also with f ),
the tissue diffusivity (Dt) and the basal signal S0:

Sb
So

= fp· exp
(
−b·Dp

)
+
(
1− fp

)
· exp(−b·Dt) (2)

Diffusion Kurtosis imaging was included in the analysis in order to calculate Mean of Diffusion
Coefficient (MD) and mean of Diffusional Kurtosis (MK) using Equation (3) by a two-variable linear
least-squares algorithm [24]:

Sb
So

= exp
(
−b·D +

1
6

b2
·D2
·K
)

(3)

In this equation, D is a corrected diffusion coefficient, and K is the excess Diffusion Kurtosis
coefficient. K describes the degree that molecular motion deviates from the perfect Gaussian distribution.
When K is equal to 0, Equation (3) evolves into a conventional mono-exponential Equation (1).

The parameters of conventional DWI (ADC), IVIM (FP, DT, DP) and DKI (MK and MD) were
obtained per voxel by the prototype post-processing software Body Diffusion Toolbox (Siemens
Healthcare, Erlangen, Germany).

Then, the mean and standard deviation values (STD) were calculated as representative values of
each descriptor on ROI.

2.4. Statistical Analysis

Statistical analysis includes both univariate and multivariate approaches performed considering
per-patient analysis.

2.4.1. Univariate Analysis

The mean, median and standard deviation value (STD) and interquartile range were calculated as
representative values of each descriptor among the group of patients with RAS mutation and without
RAS mutation. Receiver operating characteristic (ROC) analyses were performed and the Youden index
was used to individuate the optimal cut-off value for each feature. Considering the optimal cut-off

values, area under ROC curve (AUC), sensitivity (SEN), specificity (SPEC), positive predictive value
(PPV), negative predictive value (NPV) and accuracy (ACC) were calculated. The non-parametric
Wilcoxon–Mann–Whitney U test for continuous variables was used for two-groups comparisons.

A p value < 0.05 was considered as significant. However, False Discovery Rate (FDR) adjustment
according to Benjamini and Hochberg [26] for multiple testing was considered

The Statistics Toolbox of Matlab R2007a (MathWorks, Natick, MA, USA) was used for
statistical calculations.

2.4.2. Multivariate Analysis

Linear classifier, support vector machine, k-nearest neighbours (KNN) and decision tree were
considered to assess the diagnostic accuracy using all DWI- and DKI-derived parameters [27].
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A non-parametric method for selecting features with the goal of maximizing the prediction accuracy
of classification algorithms was performed using the Neighbourhood component analysis (NCA).
NCA feature selection with regularization to learn feature weights in order to minimize an objective
function that measures the average leave-one-out classification or regression loss over the training was
obtained by the Statistics and Machine Learning Toolbox™ function fscnca of Matlab [28].

Cross-validated using the leave-one-out validation approach and median values of AUC, accuracy,
sensitivity and specificity were considered.

The Statistics and Machine Learning Toolbox of Matlab R2007a (MathWorks, Natick, MA, USA)
was used.

3. Results

3.1. Univariate Analysis Results

Table 3 reports mean, median, standard deviation and interquartile range values for the extracted
metrics with and without RAS mutation.

Figure 1 reports the boxplot for diffusion extracted parameters to detect RAS mutation; a significant
discrimination, considering the False Discovery Rate (FDR) adjustment, between the group with RAS
mutation and the group without RAS mutation was obtained by the standard deviation value of MK
(MK STD), by the mean value of MD and by mean value of FP.
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Table 3. Mean, median, standard deviation value (STD) and interquartile range for each of the derived parameters in the group with RAS mutation and in the group
without RAS mutation.

ADC
Mean

[mm2/s
× 10−6]

ADC
STD

[mm2/s
× 10−6]

MK
Mean [×
10−3] *

MK
STD [×
10−3] *

MD
Mean

[mm2/s
× 10−6]

MD
STD

[mm2/s
× 10−6]

S0
Mean

[*]

S0
STD

[*]

FP
Mean

[%]

FP STD
[%]

DT
Mean

[mm2/s
× 10−6]

DT STD
[mm2/s
× 10−6]

DP
Mean

[mm2/s
× 10−5]

DP STD
[mm2/s
× 10−5]

No RAS
Mutation

Mean 1193.38 213.81 879.27 162.14 2017.08 374.18 97.56 20.34 202.42 96.34 1049.34 251.51 142.36 82.88

Median 1174.40 203.80 846.60 152.60 1898.30 384.30 87.60 14.80 183.80 91.70 960.50 261.00 135.10 77.80

Standard
Deviation 327.82 94.99 193.49 84.38 463.51 123.39 36.53 12.48 72.61 46.11 324.33 90.55 59.89 50.25

Interquartile
range 417.50 91.45 381.40 122.95 475.20 195.05 55.05 17.30 121.15 46.35 417.65 154.25 82.65 47.40

RAS
Mutation

Mean 1107.09 194.93 1025.01 259.83 1537.75 316.69 102.26 17.27 138.28 79.82 1010.55 211.69 116.72 68.60

Median 1037.80 174.20 1044.50 229.50 1374.10 304.10 94.00 12.80 122.20 69.30 957.00 188.90 106.80 66.40

Standard
Deviation 373.93 80.87 304.05 166.81 559.97 152.54 39.32 13.17 80.12 43.09 342.71 91.55 60.31 30.11

Interquartile
range 267.30 130.70 406.20 135.00 495.40 159.70 33.10 9.70 70.10 44.30 277.10 116.10 52.30 25.10

Note: STD = standard deviation; ADC = Apparent Diffusion Coefficient; MD = mean of diffusion coefficient; fp = perfusion fraction; Dt = tissue pure diffusion; Dp = pseudodiffusion;
* = dimensionless number.
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Table 4 reports the diagnostic performance for ADC and for the extracted DWI (IVIM) and DKI
features to detect RAS mutation. The best results were reached by MK STD with an AUC of 0.80
(sensitivity of 72%, specificity of 85%, PPV of 85%, NPV of 69%, accuracy of 79%) using a cut-off of
203.90 × 10−3, and by the mean value of MD with AUC of 0.80 (sensitivity of 84%, specificity of 73%,
accuracy of 77%) using a cut-off of 1694.30 mm2/s × 10−6 (Figure 2).

Table 4. Diagnostic performance of ADC-, IVIM- and DKI-derived parameters to detect RAS mutation.

AUC Sensitivity Specificity PPV NPV Accuracy Cut-off

ADC Mean 0.61 0.52 0.76 0.45 0.81 0.70 1157.41
ADC STD 0.56 0.76 0.45 0.34 0.83 0.53 166.70
MK Mean 0.80 0.72 0.85 0.85 0.69 0.79 203.90
MK STD 0.27 0.06 1.00 1.00 0.46 0.48 3218.51

MD Mean 0.80 0.84 0.73 0.54 0.92 0.77 1694.30
MD STD 0.66 0.56 0.78 0.48 0.83 0.72 377.11
S0 Mean 0.45 0.32 0.78 0.35 0.75 0.65 117.10
S0 STD 0.59 0.48 0.76 0.43 0.80 0.68 19.60

FP Mean 0.77 0.84 0.73 0.54 0.92 0.75 148.30
FP STD 0.66 0.76 0.63 0.43 0.88 0.66 79.10

DT Mean 0.56 0.44 0.81 0.46 0.79 0.71 1100.62
DT STD 0.65 0.56 0.76 0.47 0.82 0.71 258.40
DP Mean 0.65 0.76 0.58 0.40 0.87 0.63 113.60
DP STD 0.60 0.68 0.58 0.38 0.83 0.61 69.30

Note. AUC = are under curve; PPV = positive predictive value; NPV = negative predictive value. In bold are
reported the significant parameters in the detection of RAS mutation.
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Figure 2. ROC curves of ADC-, IVIM- and DKI-derived parameters to differentiate presence/absence of
RAS mutation.

Figure 3 shows a case with two liver metastases with all DWI- and DKI-derived parameter maps:
ADC map (a), S0 map (b), DT map (c), DP map (d), FP map (e), MK map (f) and MD map (g).
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3.2. Multivariate Analysis Results

Considering all extracted features, the best result was obtained considering a KNN that obtained
an AUC = 0.73, with a sensitivity of 71%, a specificity of 75% and an accuracy of 73% (Figure 4).
The classification training duration is 9.83 s. Considering NCA results, the features to use as predictors
were the mean value of S0, the standard deviation value of MK and FP, and that of DT with respective
feature weights of 0.41, 0.48, 0.47 and 0.49. Using these predictors, a KNN reached the best results
with an AUC of 0.69, a sensitivity of 71%, a specificity of 67% and an accuracy of 73% (Figure 5).
The classification training duration was 7.58 s. However, in both analyses, the tested pattern recognition
approaches did not determine an increase in diagnostic accuracy to detect RAS mutation with respect
to the single parameter.
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4. Discussion

In this study we assessed Diffusion-Weighted MRI- and Diffusion Kurtosis imaging-derived
parameters to detect RAS mutation in liver metastasis, showing a significant discrimination between
the group with RAS mutation and the group without RAS mutation by the standard deviation value of
MK (MK STD), by the mean value of MD and by the mean value of FP. The diagnostic performance
for ADC and for the extracted DWI (IVIM) and DKI features in detecting RAS mutation using
monovariate and multivariate analysis was evaluated. In the monovariate analysis, the best results
were reached by MK STD and by the mean value of MD with an AUC of 0.80 (accuracy of 79% and
77% respectively). Instead, considering all extracted features or the predictors derived by the feature
selection procedure (mean value of S0, the standard deviation value of MK, FP and of DT), the tested
pattern recognition approaches did not determine an increase in diagnostic accuracy to detect RAS
mutation with respect to the single parameter. To the best of our knowledge, this is the first paper that
evaluates the correlation between IVIM and DKI parameters and RAS mutation in liver metastasis.
Gültekin et al. [29] investigated whether there are any differences in apparent diffusion coefficient
values obtained from colorectal liver metastases according to KRAS gene mutation status. In this
retrospective study [29] were included 22 patients with 65 liver metastases due to colorectal cancer,
and the patients were divided into two groups with KRAS mutation positive (+) (n: 10, 30 lesions)
and the wild-type group (n: 12, 35 lesions). The lower ADC and ADC mean values were found to be
statistically significantly lower in the KRAS (+) group compared to the wild-type group. ROC curve
analysis revealed a statistically significant difference in terms of lower ADC and ADC mean with area
under the curve (AUC) values of 0.680 and 0.760, respectively. Therefore, they concluded that the
lower ADC and ADC mean values of colorectal liver metastasis are associated with the presence of
KRAS mutation.

MRI quantitative analysis has recently shown potential in realizing personalized medicine for
selecting the more appropriate therapy correlated with the different subtypes of tumor [29–34].
Several researchers assessed the imaging-derived parameter’s role as a precision medicine tool that
may affect treatment strategies [29–33]. Oh et al. [31] used MR-based texture analysis and identified
three imaging features that could differentiate mutant from wild-type KRAS. T2-weighted images
could be used to predict KRAS mutation status preoperatively in patients with rectal cancer. To date,
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there are a limited number of studies on “radiogenomics” in liver neoplasms, mostly focused on
hepatocarcinoma and cholangiocarcinoma [34–38].

Considering that a large rate of tumors were determined by mutations located in the MAPK
pathway, KRAS and KRAS status should routinely be examined in combination with other
clinic-pathological predictors in order to adapt optimal therapies and to stratify patient prognosis.
In fact, the most significant finding related to KRAS-mutated tumors has been its ability to determine
the anti-EGFR-based therapy’s eligibility. Moreover, KRAS mutations have been investigated for their
potential to prognosticate recurrence and survival [39]. Data from the literature reported KRAS and
BRAF mutations’ roles as prognostic and predictive biomarkers among patients undergoing colorectal
cancer liver metastases hepatic resection [40,41]. In particular, KRAS and BRAF mutations were
associated with worse overall survival and recurrence-free survival [40]. The relationship between
radiomic parameters and RAS status offers advantages, allowing a better patient selection for cancer
therapy, predicting treatment response, distinguishing favourable subsets of patients from those with
poor prognosis, and evaluating which patients may benefit from surgical treatment.

This study had some limitations, as follows: data were derived from only one cancer center,
with a single MR scanner; a small number of patients was considered, and this could influence the
generalization of the conclusions; small sample size and use of Benjamini and Hochberg correction
may lead to higher chances of type 2 error, and real effects might be overlooked; the retrospective
nature of the study, and the absence of inter- and intra-reader variability and of a validation data set
could affect the robustness of the results. Therefore, multicenter-perspective analyses, including more
patients, inter- and intra-reader variability analysis and a validation data set are needed.

5. Conclusions

Diffusion-Weighted imaging and Diffusion Kurtosis imaging could be used to detect the RAS
mutation in liver metastasis. The standard deviation value of MK and the mean value of MD
were the more accurate parameters in the RAS mutation detection, with an AUC of 0.80; therefore,
linked to other clinical data and correlated with outcome, if confirmed on a larger and different data
set, these result could produce robust and accurate clinical decision support systems and tools for
personalized medicine.
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Abbreviations

ACC accuracy
ADC apparent diffusion coefficient
AUC area under ROC curve
AT Acquisition time
CRC colorectal cancer
DP pseudo-diffusion coefficient
DT pure tissue coefficient
DWI diffusion-weighted imaging
DKI Diffusion Kurtosis Imaging
EPI echo-pulse planar sequence
FA Flip angle
FP perfusion fraction
FS fat-suppressed
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HASTE Half-Fourier Acquisition Single-Shot Turbo Spin-Echo
IVIM Intravoxel Incoherent Motion method
KNN K-Nearest Neighbor
MD the mean value of diffusion coefficient with the correction of non-Gaussian bias
MK mean value of kurtosis coefficient
MRI Magnetic Resonance Imaging
NPV negative predictive value
PPV positive predictive value
ROI Regions of interest
ROC Receiver operating characteristic
SEN sensitivity
SPAIR Spectral adiabatic inversion recovery
SPEC specificity
STD standard deviation
ST Slice thickness
TE Echo time
TR Repetition time
VIBE Volumetric Interpolated Breath-hold Examination
VOI Volume of interest
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